sábado, 20 de febrero de 2010

Catalogo NTE



El catalogo NTE o manual de Reemplazos NTE, es una especie de catálogo con un índice de muchas matrículas de componentes electrónicos en la parte del final y las características de los mismos en la parte media del libro.
Se usa así:
1. En el índice que se ubica en las últimas partes buscas la matrícula del componente deseado, checa el número que tiene enfrente.
2. En las primeras páginas busca el número que decía en el índice anterior. Aquí puedes checar el tipo de componente y datos generales, al final dice la página en la que lo encuentras y la página en la que encuentras su diagrama.
3. En la página que decía buscas el componente por el número que revisaste al principio. Puedes observar diversas características como Voltaje máximo, Corriente máxima, etc. Ahí te dice el número de diagrama, y abajo de la página dice en qué página empiezan los diagramas correspondientes.
4. Vas a la página en la que empiezan dichos diagramas y buscas el número del que deseas. Podrás ver, entre otras cosas, distribución de terminales y medidas

jueves, 11 de febrero de 2010

AISLANTES




Antes que nada tenemos que definir claramente lo que es un aislante y no son mas que cualquier material que conduce mal el calor o la electricidad y que se emplea para suprimir su flujo, o sea, que las cargas se mueven con mucha dificultad.

1 Son aquellos materiales en los cuales los electrones no se desprenden fácilmente, aún aplicando una diferencia de potencial, es decir, una presión eléctrica elevada.

Las dos clases de aislantes mas importantes que existen son:

•Aislantes Eléctricos.

•Aislantes Térmicos.

AISLANTES ELÉCTRICOS

Como su nombre lo dice es perfecto para las aplicaciones eléctricas y sería aun mas perfecto si fuera absolutamente no conductor, pero claro ese tipo de material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Un buen aislante apenas poseen electrones permitiendo así el flujo continuo y rápido de las cargas.

En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aislan con vidrio, porcelana u otro material cerámico.

La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de poxy y los poliuretanos pueden proteger contra los productos químicos y la humedad.




AISLANTES TÉRMICOS



Los materiales de aislamiento térmico se emplean para reducir el flujo de calor entre zonas calientes y frías. Por ejemplo, el revestimiento que se coloca frecuentemente alrededor de las tuberías de vapor o de agua caliente reduce las pérdidas de calor, y el aislamiento de las paredes de una nevera o refrigerador reduce el flujo de calor hacia el aparato y permite que se mantenga frío.

El aislamiento térmico puede cumplir una o más de estas tres funciones: reducir la conducción térmica en el material, que corresponde a la transferencia de calor mediante electrones; reducir las corrientes de convección térmica que pueden establecerse en espacios llenos de aire o de líquido, y reducir la transferencia de calor por radiación, que corresponde al transporte de energía térmica por ondas electromagnéticas. La conducción y la convección no tienen lugar en el vacío, donde el único método de transferir calor es la radiación. Si se emplean superficies de alta reflectividad, también se puede reducir la radiación. Por ejemplo, puede emplearse papel de aluminio en las paredes de los edificios. Igualmente, el uso de metal reflectante en los tejados reduce el calentamiento por el sol. Los termos o frascos Dewar impiden el paso de calor al tener dos paredes separadas por un vacío y recubiertas por una capa reflectante de plata o aluminio.




El aire presenta unas 15.000 veces más resistencia al flujo de calor que un buen conductor térmico como la plata, y unas 30 veces más que el vidrio. Por eso, los materiales aislantes típicos suelen fabricarse con materiales no metálicos y están llenos de pequeños espacios de aire. Algunos de estos materiales son el carbonato de magnesio, el corcho, el fieltro, la guata, la fibra mineral o de vidrio y la arena de diatomeas. El amianto se empleó mucho como aislante en el pasado, pero se ha comprobado que es peligroso para la salud y ha sido prohibido en los edificios de nueva construcción de muchos países.

En los materiales de construcción, los espacios de aire proporcionan un aislamiento adicional; así ocurre en los ladrillos de vidrio huecos, las ventanas con doble vidrio (formadas por dos o tres paneles de vidrio con una pequeña cámara de aire entre los mismos) y las tejas de hormigón (concreto) parcialmente huecas. Las propiedades aislantes empeoran si el espacio de aire es suficientemente grande para permitir la convección térmica, o si penetra humedad en ellas, ya que las partículas de agua actúan como conductores. Por ejemplo, la propiedad aislante de la ropa seca es el resultado del aire atrapado entre las fibras; esta capacidad aislante puede reducirse significativamente con la humedad.

Los costes de calefacción y aire acondicionado en las viviendas pueden reducirse con un buen aislamiento del edificio. En los climas fríos se recomiendan unos 8 cm de aislamiento en las paredes y entre 15 y 20 cm de aislamiento en el techo.

Recientemente se han desarrollado los llamados superaislantes, sobre todo para su empleo en el espacio, donde se necesita protección frente a unas temperaturas externas cercanas al cero absoluto. Los tejidos superaislantes están formados por capas múltiples de mylar aluminizado, cada una de unos 0,005 cm de espesor, separadas por pequeños espaciadores, de forma que haya entre 20 y 40 capas por centímetro.


CONDUCTORES ELECTRICOS

Un conductor eléctrico es aquel cuerpo que puesto en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Generalmente elementos, aleaciones o compuestos con electrones libres que permiten el movimiento de cargas.

Materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (ejem. el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el mejor conductor es el oro pero es muy caro, así que el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.[1]



La conductividad eléctrica del cobre puro fue adoptada por la Comisión Electrotécnica Internacional en 1913 como la referencia estándar para esta magnitud, estableciendo el International Annealed Copper Standard (Estándar Internacional del Cobre Recocido) o IACS. Según esta definición, la conductividad del cobre recocido medida a 20ºC es igual a 0,58108 S/m.[2] A este valor es a lo que se llama 100% IACS y la conductividad del resto de los materiales se expresa como un cierto porcentaje de IACS. La mayoría de los metales tienen valores de conductividad inferiores a 100% IACS pero existen excepciones como la plata o los cobres especiales de muy alta conductividad designados C-103 y C-110.[3]



CONDUCTORES




Conductores son todos aquellos materiales o elementos que permiten que los atraviese el flujo de la corriente o de cargas eléctricas en movimiento. Si establecemos la analogía con una tubería que contenga líquido, el conductor sería la tubería y el líquido el medio que permite el movimiento de las cargas.

Tipos de conductores
¿Cuantos tipos diferentes de conductores eléctricos existen?
Los conductores son materiales a través de los cuales la electricidad puede fluir fácilmente, en otras palabras, con baja resistencia.

Existen dos tipos principales de conductores:
1. Metálicos
2. Iónicos

1. Los conductores metálicos, los electrones transportan la corriente, y el material no se ve afectado por este flujo (en pequeñas corrientes). Este tipo de conductividad se encuentra en sólidos y líquidos (fundido) metales y semiconductores.

2. Los conductores iónicos, iones con carga positiva y negativa ( cationes y aniones, respectivamente) transporta la corriente. Este transporte de material altera la composición y conlleva a reacciones químicas en el material, como depósitos en los electrodos. Este tipo de conductividad se encuentra en algunos sólidos (sales especiales), sales fundidas, soluciones salinas y gases ionizados (plasmas).

Los plasmas son un caso especial, ya que uno de los componentes son los electrones y el otro son partículas de gas con carga positiva. Los dos componentes se complementan en un campo eléctrico.


Conductores: En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Conductores sólidos: Metales

Características físicas:

◦estado sólido a temperatura normal, excepto el mercurio que es líquido.

◦opacidad, excepto en capas muy finas.

◦buenos conductores eléctricos y térmicos.

◦brillantes, una vez pulidos, y estructura cristalina en estado sólido.

◦dureza o resistencia a ser rayados;

◦resistencia longitudinal o resistencia a la rotura;

◦elasticidad o capacidad de volver a su forma original después de sufrir deformación;

◦maleabilidad o posibilidad de cambiar de forma por la acción del martillo; (puede batirse o extenderse en planchas o laminas)

◦resistencia a la fatiga o capacidad de soportar una fuerza o presión continuadas

◦ductilidad: permite su deformación forzada, en hilos, sin que se rompa o astille.

Características químicas:

◦Valencias positivas: Tienden a ceder electrones a los átomos con los que se enlazan.

◦Tienden a formar óxidos básicos.

◦Energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes

Características eléctricas:

◦mucha resistencia al flujo de electricidad.

◦todo átomo de metal tiene únicamente un número limitado de electrones de valencia con los que unirse a los átomos vecinos.

◦superposición de orbitales atómicos de energía equivalente con los átomos adyacentes

◦La elevada conductividad eléctrica y térmica de los metales se explica así por el paso de electrones a estas bandas con defecto de electrones, provocado por la absorción de energía térmica.

◦Ejemplos de metales conductores: Cobre. Este material es un excelente conductor de las señales eléctricas y soporta los problemas de corrosión causados por la exposición a la intemperie, por eso se usa para los cables. También el aluminio es un buen conductor. La más baja conductividad eléctrica la tiene el bismuto, y la más alta (a temperatura ordinaria) la plata.

Conductores líquidos:

•El agua, con sales como cloruros, sulfuros y carbonatos que actúan como agentes reductores (donantes de electrones), conduce la electricidad.

•Algunos otros líquidos pueden tener falta o exceso de electrones que se desplacen en el medio. Son iones, que pueden ser cationes, (+) o aniones (-).

Conductores gaseosos:

•Valencias negativas (se ioniza negativamente)

•En los gases la condición que implica el paso de una corriente se conoce como el fenómeno de descarga o "ruptura" eléctrica del gas: paso de un comportamiento no conductor (baja corriente) a conductor.

PROPIEDADES DE LOS CONDUCTORES

Para la buena elección de un material conductor, hemos de conocer, en muchas ocasiones, sus propiedades:

•Propiedades eléctricas: conductividad, movilidad de las cargas, resistividad, resistencia.

•Propiedades mecánicas: límites elástico en (d a N/mm2 " Kg. f/mm2 (Re)), carga de rotura en d a N/mm2-R, alargamiento (%)(A), resiliencia en d a J/cm2 (K), dureza(H), resistencia al desgaste , etc.

•Propiedades físicas: densidad, homogeneidad, conductividad térmica.

•Propiedades químicas: resistencia a los agentes químicos y sobretodo a la oxidación.

•Propiedades metalúrgicas: temperatura de fusión, fluidez, soldabilidad.

•Propiedades comerciales: precio de venta, facilidad de aprovisionamiento, facilidad de transporte.

Hasta aquí hemos establecido las bases teóricas que nos han permitido definir cualitativamente los materiales conductores, ahora bien, dentro de cada grupo de materiales, las propiedades eléctricas, térmicas, mecánicas, etc. son diferentes, por lo que resulta necesario valorarlas por medio de magnitudes físicas adecuadas homologables y de aplicación inmediata al diseño.

En el caso que ahora nos ocupa (propiedades eléctricas) vamos a introducir tres factores de gran importancia como son, la movilidad, conductividad y resistividad, que se pueden relacionar entre sí, mediante expresiones sencillas en sus aplicaciones y de precisión suficiente, dando por otra parte un carácter cualitativo al estudio de la conducción eléctrica, en los materiales.

El fenómeno físico de la conducción, lleva implícita la condición necesaria de que se produzca desplazamientos de cargas eléctricas.

En el caso de los sólidos conductores, sabemos que hay electrones que cumplen esta condición (teoría de bandas) ya que el electrón tiene una determinada masa y carga eléctrica de 1,6 10-19 C.

Las Principales características de los materiales conductores son:

1. Conductividad eléctrica (Resistividad eléctrica).

2. Coeficiente térmico de resistividad.

3. Conductividad térmica.

4. Fuerza electromotriz.

5. Resistencia mecánica.




SEMICONDUCTORES





El semiconductor es una sustancia, usualmente un elemento químico sólido, o un compuesto, que puede conducir electricidad bajo algunas de las condiciones pero no de otras, ciéndo un buen medio para el control de la corriente eléctrica. Su conductancia varía dependiendo de la corriente o del voltaje aplicado a un electrodo del control, o en la intensidad de la irradiación infraroja (IR) luz visible, ultravioleta (UV), o los rayos

Un semiconductor es una sustancia que se comporta como conductor o como aislante dependiendo de la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta.

El elemento semiconductor más usado es el silicio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos II y III con los de los grupos VI y V respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p².
Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden creciente

Los semiconductores más conocidos son el siliceo (Si) y el germanio (Ge). Debido a que, como veremos más adelante, el comportamiento del siliceo es más estable que el germanio frente a todas las perturbaciones exteriores que puden variar su respuesta normal, será el primero (Si) el elemento semiconductor más utilizado en la fabricación de los componentes electrónicos de estado solido. A él nos referiremos normalmente, teniendo en cuenta que el proceso del germanio es absolutamente similar.



TIPOS DE SEMICONDUCTORES

Semiconductores intrínsecos [editar]Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente.

Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:


ni = n = p

siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura. Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.




Semiconductores extrínsecos Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio.

Semiconductor tipo N Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativas o electrones).

Cuando el material dopante es añadido, éste aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante ya que da algunos de sus electrones.

El propósito del dopaje tipo n es el de producir abundancia de electrones portadores en el material. Para ayudar a entender cómo se produce el dopaje tipo n considérese el caso del silicio (Si). Los átomos del silicio tienen una valencia atómica de cuatro, por lo que se forma un enlace covalente con cada uno de los átomos de silicio adyacentes. Si un átomo con cinco electrones de valencia, tales como los del grupo VA de la tabla periódica (ej. fósforo (P), arsénico (As) o antimonio (Sb)), se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá cuatro enlaces covalentes y un electrón no enlazado. Este electrón extra da como resultado la formación de "electrones libres", el número de electrones en el material supera ampliamente el número de huecos, en ese caso los electrones son los portadores mayoritarios y los huecos son los portadores minoritarios. A causa de que los átomos con cinco electrones de valencia tienen un electrón extra que "dar", son llamados átomos donadores. Nótese que cada electrón libre en el semiconductor nunca está lejos de un ion dopante positivo inmóvil, y el material dopado tipo N generalmente tiene una carga eléctrica neta final de cero....

Semiconductor tipo P [editar]Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos).

Cuando el material dopante es añadido, éste libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos.



El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, un átomo tetravalente (típicamente del grupo IVA de la tabla periódica) de los átomos vecinos se le une completando así sus cuatro enlaces. Así los dopantes crean los "huecos". Cada hueco está asociado con un ion cercano cargado negativamente, por lo que el semiconductor se mantiene eléctricamente neutro en general. No obstante, cuando cada hueco se ha desplazado por la red, un protón del átomo situado en la posición del hueco se ve "expuesto" y en breve se ve equilibrado por un electrón. Por esta razón un hueco se comporta como una cierta carga positiva. Cuando un número suficiente de aceptores son añadidos, los huecos superan ampliamente la excitación térmica de los electrones. Así, los huecos son los portadores mayoritarios, mientras que los electrones son los portadores minoritarios en los materiales tipo P. Los diamantes azules (tipo IIb), que contienen impurezas de boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.